500.00₽ 200.00₽
1. Экология как наука. Предмет и объект изучения экологии. Содержание экологии 3
…
18. Общая характеристика водной среды жизни. Адаптивные особенности водных растений и животных 8
…
38. Рост популяции, скорость роста. Две модели роста популяции. Кривые роста популяции, сопротивления среды, емкость среды 16
Динамика численности популяций (изменение численности) описывает колебания численности и состава организмов, вызванные актами рождения и смерти (естественная динамика численности), а также миграциями (пространственная динамика численности) [1].
Если рождаемость в популяции превышает смертность, то популяция, как правило, будет расти. С увеличением плотности скорость роста популяции постепенно снижается до нуля. При нулевом росте популяция стабильна, т. е. размеры ее не меняются. Отдельные организмы при этом могут расти и размножаться. Нулевая скорость роста означает лишь то, что скорость размножения, если оно происходит, уравновешена смертностью. Данная картина характерна для ряда одноклеточных и многоклеточных организмов, например для клеток водорослей в культуральной жидкости, для фитопланктона озер и океанов весной, для насекомых (мучные хрущаки, а также клещи, интродуцированные в новое местообитание с обильными запасами пищи, где нет хищников) [6].
Миграция, или расселение, так же как и внезапное снижение скорости размножения, может способствовать уменьшению численности популяции. Расселение может быть связано с определенной стадией жизненного цикла, например с образованием семян. Рассматривая вопрос об оптимальных размерах популяции в данной среде, следует учитывать поддерживающую емкость или кормовую продуктивность среды. Чем выше поддерживающая емкость, тем больше максимальный размер популяции, который может существовать неопределенно долгое время в данном местообитании. Дальнейшему росту популяции будут препятствовать один или несколько лимитирующих факторов. Это зависит от доступности ресурсов для данного вида [6].
Таким образом, скорость роста популяции в естественных местообитаниях будет зависеть от климатических изменений, от снабжения пищей и от того, ограничено ли размножение определенным временем года и др., что должно учитываться при составлении моделей или их усовершенствовании [6].
Математические модели экспоненциального роста популяций и роста при ограниченных ресурсах. Рост численности популяции в геометрической прогрессии можно описать с помощью простых уравнений. Так, в популяции с исходной численностью в N особей за промежуток времени Dt появляется DN новых особей. Если число вновь появившихся особей прямо пропорционально N и Dt, то имеем уравнение DN = r ×Dt ×N. Разделив обе его части на Dt, получим
(1)
Величина – абсолютная скорость роста численности, – биотический потенциал или удельная скорость роста численности.
За малый промежуток времени изменение численности равно ее производной и уравнение (1) можно переписать так:
(2)
Решение этого уравнения – функция
. (3)
Здесь е – основание натуральных логарифмов (е » 2,72…). График этой функции и есть экспонента (рис. 2,вверху).
Рис. 2. Реальная и теоретическая кривые роста численности инфузорий-туфелек (вверху) и рост численности жуков определенного вида в культуре (численность меняется по правилам логистического роста)
Пунктирная линия – теоретическая кривая (экспонента); сплошная линия – в реальной культуре рост численности замедляется и через определенное время останавливается
В модели экспоненциального роста удельную рождаемость b и удельную смертность d можно обозначить как .
При этом в замкнутой популяции
DN » b×N×Dt — d×N×Dt;
r = b – d. (4)
Если смертность выше рождаемости, то убывание численности тоже описывается уравнением (3), но с отрицательным r. Такой процесс называют экспоненциальным затуханием численности.
Модель динамики численности популяции при ограниченных ресурсах предложил в 1845 г. французский математик Ферхюльст. Уравнение, которое носит его имя, выглядит так:
(5)
Уравнение Ферхюльста отличается от уравнения экспоненциального роста тем, что в правой его части добавляется выражение mN2. Это выражение учитывает число встреч животных, при которых они могут конкурировать за какой-либо ресурс: вероятность встречи двух особей пропорциональна квадрату численности (точнее, плотности) популяции. У многих животных рост численности популяции действительно ограничивается именно частотой встреч особей.
Перепишем уравнение Ферхюльста следующим образом:
(6)
Выражение в скобках – удельная скорость роста численности. Здесь она непостоянна и убывает с увеличением численности популяции. Это отражает усиление конкуренции за ресурсы по мере роста численности.
Если в уравнении (6) вынести в правой части rN за скобки и обозначить за , то получим:
(7)
Если N мало по сравнению с k, то выражение в скобках близко к единице: при этом уравнение (7) переходит в уравнение экспоненциального роста. График роста численности будет при малых N близок к экспоненте. Когда N близко к k, выражение в скобках близко к нулю, т. е. численность популяции перестает увеличиваться. Отсюда ясно, что k в данной модели –это и есть емкость среды. При N больших, чем k, абсолютный прирост численности становится отрицательным, и численность убывает до величины, равной емкости среды. График зависимости численности популяции от времени, соответствующий решению уравнения (7), – S-образная кривая, подобная изображенной на рис. 2, внизу. Эта кривая называется логистической кривой, а рост численности, соответствующий уравнению (7), – логистический рост [6].
На логистической кривой есть точка, где абсолютная скорость роста численности максимальна. Можно показать, что максимальная скорость роста достигается, когда численность равна.
Популяции, существующие в условиях ограниченных ресурсов, нередко хорошо подчиняются правилам логистического роста [6].
58. Биосфера, основные понятия и определения. Состав и границы биосферы 21
…
79. Антропогенное воздействие на гидросферу. Влияние на воды суши и воды Мирового океана 24
…
Библиографический список 30